

MEMS are becoming 3D and atomically precise

Andrei M. Shkel

Mechanical & Aerospace Engineering University of California – Irvine

Email: andrei.shkel@uci.edu
Phone: (949) 824-3843
http://mems.eng.uci.edu

Presentation at **Tohoku University**, **Japan**, 13 May, 2016

UCI University of California, Irvine

University of California @ Irvine

University of California system

- Founded in 1868, now 10 campuses across California
- 450,000 people total (students, faculty, staff), \$23 billion/year

University of California, Irvine

- Founded in 1965, 40,000 people, \$2 billion/year
- Ranked #1 of all US universities under 50 years old

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

UCI Microsystems Laboratory http://mems.eng.uci.edu

Projects

- Navy gyro and FM IMU
- DARPA PASCAL, MRIG
- Other seedlings etc.

Collaborators

- JPL, ISC8
- NG Navigation Systems
- Foundries: Teledyne, IMT
- Past: NIST, UCB, Systron
- 10 people (8 PhD)
- \$2M/year, \$2M equipmen

Andrei M. Shkel

MEMS Gyros – Why?

20 years ago

- First silicon MEMS gyro by Draper
- 15,000 deg/h performance

Today

- 109 of consumer gyros, 106 of automotive
- 10⁴ of tactical grade 10 deg/h silicon gyros
- Dozen groups developing 0.1 deg/h gyros

Next 5 years

- Customers will get the first 0.1 deg/h gyro
- Avalanche revolution in market and R&D
- Mid range FOGs, RLGs out of business
- 10¹² MEMS IMUs, Internet of Things

Precision, stability, miniaturization, on-chip multi-sensing functionality

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Research Projects

Copyright © The Regents of the University of California. All rights reserved

Full Cycle of Development

Andrei M. Shkel

Microsystems Laboratory

Postdoctoral Fellows

Prof. Andrei Shkel Dr. Sergei Zotov Dr. Joan Giner

Graduate students

Alumni

2013: Igor Prikhodko, Jalal Ahamed, Gunjana Sharma, David Blocher

2012: Elham Asadollahei, Sandeep Kumar, David Markus, Chris Raum

2009: Alex Trusov, Adam Schofield, Monty Rivers, Marc Salleras

2008: Max Perez, E. Jesper Eklund

2007: Jasmina Casals

2006: Ilya Chepurko 2005: Chris Painter

2004: Cenk Acar, Shamaun Holston

2003: Jiayin Liu

2001: Jasmina Casals, Sebnem Eler, Andreu Fargas, Jung-Sik "J" Moon

2000: Johanna Yung

http://mems.eng.uci.edu

Ancient problem of PNT

Andrei M. Shkel

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Today's PNT solutions

Solution		Challenge		
GPS and GNSS (absolute navigation)	UBX-G5010	 1-10 m CEP: + C-SWaP of user equipment: +/+ Availability of signal: +/ - Resistance to jamming & spoofing: - Acceptable update rate: +/- 		
Inertial sensors & Clocks (incremental navigation)	HG1930 MEMS IMU	 10 m CEP in 20 sec (MEMS): +/- C-SWaP of user equipment: + Availability of signal: + Resistance to jamming & spoofing: + Acceptable update rate: + 		
Enhanced inertial (e.g., ZUPTing)		> x100 extended operation (app limited)		
Radio navigation, Radar navigation		\$ engineered infrastructure		
Vision-based		 Representation of environment, sensing models, localization algorithms 		
Signal of Opportunity (SoOP): WLAN (Wi-Fi, Bluetooth, RSS AM&FM Radio, DTV, Cellular,	s), GSL/3G,	 Probabilistic (scenario dependent) Many challenges: geometry of transmitters, multipath, non-line of sight 		

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Inertial-only navigation

Flight from LA to NYC using inertial-only navigation system

The Grand Challenge

Position Accuracy (CEP):

Inertial guidance for munitions

Desirable: 10 m after 20 min

SoA IMU	10 sec	30 sec	60 sec	3 minutes	20 minutes			
0.1 milli-G	0.05m	0.44m	1.77m	15.83m	110.8m			
0.02 deg/hr	_	0.004m	0.034m	0.922m	6.454m			
1 milli-radian	_	0.002m	0.017m	0.461m	3.227m			
RSS	0.050m	0.440m	1.770m	15.864m	111.048m			
SoA Micro-	10 sec	30 sec	60 sec	3 minutes	20 minutes			
IMU								
4 milli-Gs	1.96m	17.66m	70.63m	633.35m	4,433.45m			
4 deg/hr	0.032m	0.856m	6.843m	184.348	1,290.436m			
3 milli-radians	_	0.006m	0.051m	1.383m	9.681m			
RSS	1.960m	17.681m	70.961m	659.635m	4,617.445m			
	Time of Flight							
MEMS IMU	10 sec	30 sec	60 sec	3 minutes	20 minutes			
aging								
400 milli-Gs	196.29m	1,766.42m	7,063.22m	63,334.76m	442,343.32m			

855.356m

0.051m

106.942m

0.006m

1.769.65m

accel: 10^{-6} [G] or 1 μ -G gyro:10⁻⁴[deg/hour] allign: 10^{-3} [rad] or 3.3 deg

All in presence of

- 20,000 g (survive)
- 1,000 g (operation)
- -54C to +85C
- 40Hz spin

23.043.526m

1.383m

161.304.68m

9.681m

500 deg/hr

3 milli-radians

RSS

3.961m

196.33m

Microtechnology for Positioning, Navigation, Timing

The program addresses the emerging DOD need to:

- Decrease reliance on GPS
- Increase system accuracy
- Reduce co-lateral damage
- Increase effective range Reduce SWAP&C

Objective
A Zinn

Parameters	Units	SOA	SOA MEMS	micro-PNT
Size	mm³	1.6x10 ⁷	6.5x10 ⁴	8
Weight	gram	4.5x10 ³	2x10 ²	~2
Power	Watt	25	5	~1
Gyro Range	deg/sec (Hz)	1,000 (3)	3,600 (10)	15,000 (40)
Gyro Bias	deg/hr	0.02	4	0.01 (0.001)
Gyro ARW	deg/√hr	0.01	0.12	0.001 (0.0001)
Gyro Drift	ppm, 3σ	1	400	1
Accel. Range	g	25	70	1,000
Accel. Bias	mg	0.1	4	0.1 (0.001)
Misalignment	μ-radians, 3σ	200	1,000	100
Short-term Time Loss	ns/min	0.001	100	1
Long-term Time Loss	ns/month	10	N/A	32

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Our Options on Micro Scale

Optical

(Sagnac Effect)

□ RLG

Exact cavity. prec. mirrors, gas leakage, 100sV (10W)

□ FOG

RFOG

$$\Delta f = \frac{4A}{\lambda_s L n} \Omega$$

 $\Delta f = \frac{4A}{\Omega} \Omega$ narrowband source & cav

 $\Delta f = f_{cw} - f_{cc}$

 IFOG covers low/medium performance

Atomic

(Spin or "Sagnac")

☐ ASG on NMR

 $\omega =$ $\gamma B_0 + \Omega$

sensor measuring Larmor shift

Magnetic

□ AIG (matterwaves

out: !!! $\Delta\Omega(A.S/N)$!!

like IFOG but 'splitters", "mirrors", detectors are different

Mechanical

(gyroscopic effect)

Spinning

Large inertia and fast spin. Levitation

□ Vibrating

Rate gvro: large drive amp, symm

 $-\eta \int \Omega dt$

Whole angle gyro: hard to build, symm

Andrei M. Shkel

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

What did and didn't work

Didn't

- Miniaturization of RLG
 - Unavoidable solid glass optical block and mechanical dither. Miniaturization reduced reliability from 10,000h to ~100h of operation, due to slow leakage of gas, exacting cavity, precision mirrors, stringent clean room conditions
- □ Tunneling accelerometer
 - High sensitivity, but drift, large DC noise, migration of atoms, interactive atomic force, mobile absorbed contamination, distribution of electron traps,...

Did

Andrei M. Shkel

- □ HRG (e.g., Delco, SAGEM, Электроприбор)
- ☐ Bulk accelerometers with self-calibration (e.g., SiAc)

Type I & Type II gyroscopes

Reference: A. M. Shkel. Type I and Type II Micromachined Vibratory Gyroscopes. In IEEE/ION Position Location and Navigation Symposium (PLANS), pg. 586-593, San Diego, California, USA, 2006.

measurement

First MEMS devices – 2D

- Problem of high-Q frequency selectivity in IC
- Used active feedback RC circuits & semicond.
- Proposed passive mechanical resonance for Q
- Harvey C. Nathanson, et al., 1965

Andrei M. Shkel

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

30 years later – 2.5D

US Patent 5,501,893

- Deviation from bulk wet etching processes
- Not IC-like surface micromachining
- Pulsed isotropic plasma etching & passivation
- High aspect ratio
- Franz Laermer and Andrea Schilp, 1996

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Symmetry is the key

anisodamping

University of

+ rotation

3D shells on MACRO scale

northropgrumman.com

sagem-ds.com

Advantages of wineglasses

- Dynamically balanced
- Robust to g-forces

Andrei M. Shkel

Robust to thermal variations

Device specifications

- Q = 25 mil, bias stability < 0.0001 °/hr
- Size > 1 inch
- 50k usd per axis

Extremely high performance, boutique process, outrages cost

3D inspiration

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Micro Glassblowing process

US Patent 7694531: Micro-glassblowing of pyrex glass

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Wafer-level process

* J. Eklund. A.M Shkel., JMEMS 2007

From Pyrex to Fused Silica

1700 °C glassblowing temperature is required

Fabrication Process "A"

Step 1: Etching/Bonding Silicon / Pyrex / Silicon Simultaneous bonding

Step 2: Glassblowing Through the stencil 875 °C for ~2 minutes

Step 3: Laser cutting Excimer laser ablation Along circle of latitude

Step 4: Stem release XeF2 etching of stencil >2000:1 selectivity

Wineglass with stem

* Published in Technologies for Furure M. Worksop 2011

Issues: Hollow/large diameter stem, requires stencil layer

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

University of

Fabrication Process "C"

Planar electrodes provide scalability to wafer-level

a) Silicon subsrate is etched and glass device layer is bonded.

Fabrication Process "B"

e) A thin metal layer is blanket coated using sputtering.

D. Senkal, M.J. Ahamed, A.A. Trusov, A.M. Shkel,, JMEMS

Plastic deformation of device layer

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

UCI University of California, Irvine

Batch fabrication

Batch-process → Scalable

Surface quality

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Self-aligned < 200 μm stem

Q-factor

Q-factor is not at TED limit (20M), can be improved further

Understanding Q-factor

Total Q-factor is determined by the weakest link

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Primary and Secondary Calibration on Active Layer

Quadruple Mass Gyroscope

High Quality Factor CVG:

- Dynamically balanced structure
- Anti-phase motion: robust to g-forces
- Zero reaction moment on anchor
- Mode Ordering and Mode reversal

QMG is dynamic analogous to HRG

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Quad Mass Gyro (QMG) Lever mech

Design

- 4 anti-phase tines
- 20 sync. levers

Features

- Symmetric *f* and *Q*
- Angle gain of 0.9
- $Q_{TED} > 1,000,000$

Sophisticated design of multi-DOF system on a simple SOI platform

*Trusov, Schofield, Shkel, US Patent 8,322,213

SOI as a platform

Quad Mass Gyro die

Flexible platform for academic research on design of sensors

Copyright © The Regents of the University of California. All rights reserved

Current results: Algorithmic Development

Implemented Continuous Self-Calibration Algorithms

Current results: Electronic Platform

Loops:

- Rate mode,
 - PLL
 - AGC
 - RCA
 - QCA
- Whole Angle
- Mode Reversal,
- Virtual Carouseling
- Self calibration

Interface:

DARPA PALADIN

PALADIN-compatible control and characterization platform

DISTRIBUTION STATEMENT C. Distribution authorized to US Government agencies and their contractors for the purpose of the Spring 2016 micro-PNT Program Review.

Other requests for this document shall be referred to DARPA.

3

UCIRVINE

DARPA

DARPA Current results: Whole Angle Mode Performance

Whole Angle demo with 3 PPM error @18,000° /s range.

Current Results: Near-Nav Grade QMG Performance

Demonstrated near-Navigation grade in-run ARW and bias floor

DISTRIBUTION STATEMENT C. Distribution authorized to US Government agencies and their contractors for the purpose of the Spring 2016 micro-PNT Program Review.

Other requests for this document shall be referred to DARPA.

38

Approaches for miniature Multi-axis Timing and Inertial Measurement Unit (TIMU)

Andrei M. Shkel

Technical Approach

1. Batch fabrication

2. Small volume

3. High Sensitivity High aspect ratio single-axis sensors

DISTRIBUTION STATEMENT C. Distribution authorized to US Government agencies and their contractors for the purpose of the Spring 2016 micro-PNT Program Review. Other requests for this document shall be referred to DARPA.

Silicon origami-like approach

- A. Efimovskaya, D. Senkal, A. M. Shkel, IEEE Transducers 2015 Conf., Alaska, USA, June 21-25,
- · A. Efimovskaya, D. Senkal, S. Askari, A. M. Shkel, IEEE ISISS 2015. Hawaii. USA. March 23-26, 2015.
- · A. Trusov, M. Rivers, S. Zotov, A. M. Shkel," Three dimensional folded MEMS technology for multi-axis sensor systems", US Patent 8368154 B2.
- A. Efimovskaya, Y. Lin, and A. M. Shkel, "THRU-Wafer Interconnects for Double-Sided (TWIDS) Fabrication of MEMS", IEEE Inertial Sensors, 2016.
 - A. M. Shkel and A. Efimovskava "Thru-Wafer Interconnects for MEMS Double-Sided Fabrication Process (TWIDS)", UC CASE N° 2015-218-2.
 - A. Efimovskaya, D. Senkal, and A. M. Shkel, "A Lowcost Wafer-level Process for Packaging MEMS 3-D Devices", UC CASE N° 2015-807-1.

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Technology potential

Origami-like 3D MEMS Technological Platform

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Chip-Scale Combinatorial Atomic Navigator (C-SCAN)

Utilize ensemble of technologies to increase precision and sample rate

□ <u>Ultra-miniaturization of</u> atomic inertial sensors

- Harness energy transitions in nuclei magnetic resonance, atomic interferometry, hyperfine transfers, and atom number amplification
- Exploit inherent coupling in polarized spin-exchange

Multi-functional microsystem

- Atomic clocks as a frequency reference for frequency modulated sensors.
- Evanescent wave confinement of a Bose condensate
- Solid-state devices integrated in atomic cells, feed-back coupled systems

Combinatorics of dissimilar physics

- Develop zero net phase-shift coupling architecture to trigger atomic emission and discipline less accurate solid-state sensor
- Adapt optimal estimators for bias adjustment and compensation

■ Fabrication processes

- Utilize under-explored processes: post-release assembly, chip-level welding
- 3D fabrication and assembly processes: blow, stretch, stamp, roll

Approved for Public Release, Distribution Unlimited

UCI Chip-Scale Combinatorial Atomic Navigator (C-SCAN)

Atomic microsystems

Path to the Future

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

If I were to guess ...

Ultimate Navigation Chip (uNavChip)

Core

Timing and Inertial Measurement Unit

Guard

Authenticate external signals of opportunity

Cloud

Detect external signals of opportunity

Provide maximum autonomy, security, precision

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Enabled by precision

Military

Consumer & Industrial

- Geologation
- Stabilization
- Precision timing

Encryption

Stabilization

Acknowledgement

DARPA

- ☐ Micromachined Rate Integration Gyroscopes (MRIG)
- □ Primary and Secondary Calibration on Active Layer (PASCAL) with Northrop Grumman
- ☐ Timing and Inertial Navigation Unit (TIMU)
- □ Chip-Scale Combinatorial Atomic Navigator (CSCAN)
- □ Precise Robust Inertial Guidance for Munitions: Advanced Inertial Micro Sensors (PRIGM: AIMS)

Research consumes \$ to create ideas. innovation consumes ideas to create \$

dismounts

www.ieee-inertial.org

Andrei M. Shkel

Copyright © The Regents of the University of California. All rights reserved

Contact information

Email: andrei.shkel@uci.edu

Phone: (949) 824-3843 http://mems.eng.uci.edu (for publications, IP, projects)

Microsystems Laboratory
Mechanical and Aerospace Engineering
4202 Engineering Gateway
University of California, Irvine
Irvine, CA 92697-3975

Andrei M. Shkel

 ${\bf Copyright} @ {\bf The \ Regents \ of \ the \ University \ of \ California. \ All \ rights \ reserved}$

MEMS ジャイロスコープの世界的第一人者 Andrei M. Shkel 教授による特別セミナー Special Seminar by Prof. Andrei M. Shkel, The world-leading expert in MEMS gyroscopes

日 時: 2016年5月13日(金曜日) 13:00~15:00 13 May 2016 (Friday) 13:00~15:00

参加無料,事前申込不要 Admission free, No advanced registration required

場 所: 東北大学 青葉山キャンパス マイクロ・ナノマシニング研究教育センター 3 階 セミナー室 Tohoku University, Aobayama Campus, Micro-Nanomachining Research & Education Center (MNC), 3rd floor, Seminar room

(田中(秀)研究室ウェブサイト「アクセス」ページの地図上 A14 の建物)

(Building A14 on the map at http://www.mems.mech.tohoku.ac.jp/access/)

主 催:田中(秀)研究室,マイクロ・ナノマシニング研究教育センター Organized by S. Tanaka Laboratory and MNC, Tohoku University

講 師:

Prof. Andrei M. Shkel

Department of Mechanical and Aerospace Engineering, University of California, Irvine

Dr. Andrei M. Shkel has been on faculty at the University of California, Irvine since 2000. From 2009 to 2013, he was on leave from academia serving as a Program Manager in the Microsystems Technology Office of DARPA. Dr. Shkel has been on a number of editorial boards, most recently as Editor of IEEE/ASME Journal of MicroElectroMechanical Systems (JMEMS) and the founding chair of the IEEE Inertial Sensors conference (INERTIAL). Dr. Shkel is the IEEE Fellow. He has been awarded in 2013 the Office of the Secretary of Defense Medal for Exceptional Public Service, the 2009 IEEE Sensors Council Technical Achievement Award, and the 2005 NSF CAREER award. He received his Diploma (1991) in Mechanics and

Mathematics from Moscow State University, Ph.D. degree (1997) in Mechanical Engineering from the University of Wisconsin at Madison, and experienced postdoc (1999) at Berkeley Sensors and Actuators Center (BSAC).

要 旨:

After briefly reviewing the fundamentals of MEMS gyroscope, the state-of-the-art MEMS gyroscope technology is introduced. The performance of MEMS gyroscopes are continuously improving to reach the navigation grade, which has been conventionally achieved only by optical gyroscopes. Various types of precise MEMS gyroscopes and advanced control systems developed by Prof. Shkel's Laboratory are presented, including a quad mass gyroscope, a micro hemispherical resonator gyroscope (HRG), and origami-like 3D assembly of MEMS gyroscopes. In addition, this talk touches on novel atomic MEMS for ultra-precise timing reference and magnetic sensing. After this seminar, the attendee can understand that MEMS technology can further extend its sensing precision beyond the present level.

【予習資料】

田中(秀)研究室ウェブサイト「インターネット記事」のページ

- State-of-the-art MEMS Gyroscopes for Autonomous Cars
- チップ上にフーコー振子 ― 高性能 MEMS ジャイロ 自動運転などに向けて開発が進む
- ・ MEMS はもうかる 「IEEE MEMS 2016」学会報告